Step of Proof: bool-to-neg-dcdr_wf
11,40
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
bool-to-neg-dcdr
wf
:
.....assertion..... NILNIL
1.
A
: Type
2.
f
:
A
3.
A
{
f
}
(
x
:
A
. Dec(
f
(
x
) = ff))
latex
by (Unfold `bool-to-neg-dcdr` 0)
CollapseTHEN (Auto
)
latex
C
.
Definitions
{
f
}
,
bool-to-neg-dcdr-aux
,
x
:
A
B
(
x
)
,
Type
,
Dec(
P
)
,
x
:
A
.
B
(
x
)
,
,
s
=
t
,
,
f
(
a
)
,
ff
,
t
T
Lemmas
bool-to-neg-dcdr-aux
,
decidable
wf
,
bool
wf
,
bfalse
wf
origin